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Discovery	and	Design	of	Novel	wide	band	gap	Oxide	Perovskites
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Objective:	
Down select from millions of potential compounds to a relatively small and 
tractable set of promising wide band gap oxide perovskites

Oxide	Perovskites
• The perovskite structure can accommodate 90% of the metallic ions in the 

periodic table

• Amenable to band gap tuning

• Exhibit fascinating electrical and magnetic properties:

• piezoelectricity, optical properties, 

• high-temperature superconductivity, 

• ferroelectricity, magneto-strictive effects

Talapatra, Anjana, et al. "A Machine Learning Approach for the Prediction of Formability and Thermodynamic Stability of Single and Double Perovskite 
Oxides." Chemistry of Materials (2021).
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A	Strategy	for	Scintillator	Discovery	and	Optimization

A’A
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~	5.2	million
unique	combinations
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Objective:	
Down select from millions of potential compounds to a relatively small and 
tractable set of promising scintillators

Single	perovskite	(ABO3)	

B

A

Double	perovskites
- AA’B2O6
- A2BB’O6
- AA’BB’O6

A’A
B B’

• Assumptions:

• 50-50 compositions

• 2 elements per cation site

• Cubic structures

• Rocksalt ordering
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Why	Machine	Learning?

• To screen millions of compounds

• Unearth relationships between electronic structure, chemistry, thermodynamic stability, formability and 

band gap

• We know how to:

• Calculate thermodynamic stability 

• Calculate approximate band gap

• Very complicated to:

• Estimate synthesizability
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Chemically compatible • Charge	neutrality	
• Include	all	feasible	
combinations	of	oxidation	
states

• Cation	size	(	A	>	B)

Machine	
learning
Models
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Chemically	
compatible	
candidates

Perovskite	discovery	using	Machine	Learning

Stable	and	
Formable	
candidates
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Components of ML infrastructure
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Features Models

Data analysis
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Components of ML infrastructure

Training data

Features Models

Data analysis
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• Experimental data 
from literature

• DFT calculations

• Model is as good as your 

training data

• To increase applicability, 

ideally use features that are 

easy to populate

• Double check, triple check 

source of features and values 

of features. 

• 90 % of bugs can be attributed 

to mistakes in populating 

training data

• Reproducibility and 

consistency

• Elemental features
• Domain knowledge
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Components of ML infrastructure

Training data
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• Choose modeling technique 

wisely

• Baseline comparisons across 

different models

• Ensure that what you are 

producing is better than what 

is available, else use what is 

available

Random forest models:
- Classification (down-
selection)
- Regression ( band gap)
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Components of ML infrastructure

Training data

Features Models

Data analysis
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• If possible, increase training 

data adaptively keeping an 

eye on performance metrics

• Analyze data and results 

continuously to ensure it 

makes sense intuitively

• Avoid data leakage

• If something seems off, it 

probably is off.

Cross-validation
Feature selection
Testing
Performance curves
Partial dependence 
plots
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Training	data

1 Formability	classification Training	data:	Experimental

Training	data:	
• Calculated	using	
DFT

• 5152	compounds
• GGA	- PBE	
formalism

• Training	data	compiled	from	literature	and	experimental	databases	(	ICSD	etc)
• 1505	single	and	double	oxide	compositions

• 1187	perovskites
• 318	non-perovskites

3 Wide/narrow	band	gap	classification
• Criterion:	Band	gap	(Eg>	0.5	eV)

• 1575	:	wide	band	gap
• 3577:	narrow	band	gap

Training	data:	DFT

4 Band	gap	regression
• 1575	:	wide	band	gap	materials

Training	data:	DFT

2
• Criterion:	

• Energy	above	hull	<	50	meV/atom		
• 3271:	stable
• 1881:	unstable

Thermodynamic	stability	classification	 Training	data:	DFT2
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Combination	of	chemical	and	structural	features

Pseudopotential	
radius*

Highest	occupied	atomic	
orbital	(	HOMO)*

Tolerance	factor	
(𝜏)

Electronegativity* Lowest	occupied	atomic
Orbital	(	LUMO)*

Octahedral	factor	
(�̅� )

Electron	affinity* Ionization	energy Mismatch	factor	
(Δμ)
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* Element	specific
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Features:		Machine	Learning	models

DFT	Training	dataset

A
B

Frequency of
occurrence

Frequency of occurrence in A- and B- sites

A
B

Frequency of
occurrence

Frequency of occurrence in A- and B- sites

Formability	Training	dataset
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• Formability:	Ability	to	experimentally	synthesize	a	
model

• Relies	on	geometric	criteria	derived	using	either	ionic	
radii	or	bond	distances	and	is	a	qualitative	approach	
to	identifying	chemistries	that	will	form	perovskites.

Comparison	of	perovskite	formability	and	stability

• Stability:	 Thermodynamic	preference	to	form	the	
structure

• Energy	hull	construction	to	determine	if	the	structure	
is	on	the	convex	hull	and	will	stabilize	and	not	
decompose.

Are	both	formability	and	thermodynamic	stability	necessary	to	guarantee	the	viability	of	a	composition	
as	a	perovskite	candidate	or	is	one	a	more	robust	metric	compared	to	the	other?

It	is	not	known	with	certainty	whether	a	formable	perovskite	is	necessarily	thermodynamically	stable	
and	vice	versa.
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Formability	classification	model
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Random forest classification results for perovskite formability. a) Feature importance plot for all the features with non-
zero values, b) Confusion matrix, c) Receiver operating characteristic (ROC) curves, and d) Precision-recall curves of the
cross-validated random forest classification on test data.
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Stability	classification	model
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Random	forest	classification	results	for	perovskite	stability.	a)	Feature	importance	plot	for	all	the	features	with	non-zero	
values,	b)	Confusion	matrix,	c)	Receiver	operating	characteristic	(ROC)	curves,	and	d)	Precision-recall	curves	of	the	
cross-validated	random	forest	classification	on	test	data.
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Wide/narrow	band	gap	classification	model

https://nanohub.org/tools/perovMLdis

https://nanohub.org/tools/perovMLdis
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Novel	wide	bandgap	oxide	perovskite	predictions

Chemically compatible

Stable and formable candidates

Wide band gap candidates

Down-selected high probability wide band
gap candidates

Perovskite domain

304
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5.2 million 

Down-selected candidates
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Novel	wide	bandgap	oxide	perovskite	predictions

Chemically compatible

Stable and formable candidates

Wide band gap candidates

Down-selected high probability wide band
gap candidates

Perovskite domain
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Computational	confirmation	of	results

• 150	of	the	predicted	304	candidates	were	

randomly	selected	and	DFT	calculations	carried	

out.

• Wide	band	gap	

• Calculated	bandgaps	accurate	with	a	average	

MAE	=	0.15	eV
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Some	more	suggestions

• Use machine learning only if necessary

• Ensure code is reproducible, with no ad-hoc measures, and all data sources annotated if applicable

• If permissible, have data and codes and scripts publicly available in a repository

• Answer emails from fellow researchers regarding published work and repositories
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Thank you!


